THE BODY ELECTRIC Electromagnetism and the Foundation of Life ROBERT O. BECKER, M.D., and GARY SELDEN Illustrated by David Bichell WILLIAM MORROW **NEW YORK** ## Eight the new procedure. ## The Silver Wand When Apollo whisked Aeneas off the field of battle before Troy, he healed the hero's shattered thighbone in a matter of minutes. Without a god at the bedside, the process takes three to six months, and sometimes it fails. If the bones didn't knit, the limb formerly had to be amputated after the victim had suffered for a year or more. It was only in 1972 that I felt ready to try electrical stimulation of human bone growth in such cases. Zachary B. (Burt) Friedenberg, Carl Brighton, and their research group at the University of Pennsylvania had already reported the first successful electrical healing of a nonunion two years before, but to avoid possible side effects we felt we must duplicate the natural signal more closely than they had, and we didn't know enough until after our work on rat leg regeneration. Like Friedenberg we decided to place a negative electrode between the bone pieces, but using a much smaller current and a silver electrode rather than stainless steel. We thought silver would be less likely to react chemically with the tissue and better able to transmit the electrical current. At that time we were treating a patient whose condition seemed to demand that we try ## Minus for Growth, Plus for Infection Jim was in bad shape. Drafted during the Vietnam War, he'd been a reluctant, rebellious soldier. He survived his tour in Nam and was transferred to an Army base in Kansas late in 1970. On New Year's Eve he broke both legs in an auto crash. The local hospital put him in traction, with pins drilled through the skin and bones to hold the pieces together. When he was moved to the base hospital a few days later, all the pins had to be removed due to infection. Jim's doctors couldn't operate because of the bacteria, so they had to be satisfied with a cast. Because he'd broken one leg below and the other above the knee, he needed a huge cast called a double hip spica. He was totally encased in plaster, from his feet to the middle of his chest, for six months. By August, his left lower leg had healed, but the right femur showed no progress at all. The quarter-inch holes where the pins had been were still draining pus, preventing surgery. That September he was given a medical discharge and flown to the Syracuse VA hospital. When I first saw him, he was still in a large cast, although now his left leg was free. The halves of the right thighbone were completely loose. There was nothing in standard practice to do but leave the cast on and hope. After six more months Jim's hope was just about gone. For a year he'd lain in bed, unable to leave the hospital for even a brief visit home. He vented his rage against the staff, then grew despondent and unable to face the future, which no longer seemed to include his right leg. Then Sal Barranco, a young orthopedic surgeon in his last year of residency, was assigned to my service from the medical school. He'd already been a good doctor when he briefly worked with me two years before—smart, hardworking, and really interested in his patients. He took over Jim's care, spent many hours talking with him, and arranged for counseling. Nothing seemed to help. Jim slipped further and further away from us. Sal had always been interested in what was going on in the lab. In fact, I'd often tried to interest him in a career of teaching and research, but he preferred surgery and its rewards of helping people directly. In February of 1972, as we were nearing the clinical stage with our bone stimulator, Sal said, "You know, Dr. Becker, you really should consider electrically stimulating Jim's fracture. I don't see anything else left. It's his last chance." The problem was that none of Friedenberg's patients had been infected. Although Jim's septic pin tracts weren't right at the fracture, they were too close for comfort. If I stirred up those bacteria when I operated to insert the electrodes, the game was lost. Moreover, it was obvious by now that electricity was the most important growth stimulus to cells. Even if it produced healing, no one could be sure what these cells would do in the future. They might become hypersensitive to other stimuli and start growing malignantly later. This was the first time in the history of mec will. I was afraid public's fancy and about the technic lose momentum t that if I carefully tainties, and let thing. As to the infect stop growth. My gested that just as we could turn it of be of great import needy program, to afford the expensi We had to settle In preliminary trically positive, inch in diameter, the culture by the cause no single an delay healing furt I explained all t wanted him to ke gerous. With tear want my leg." that if I inserted t infected, I could a save the leg a wh Two days later fracture was commoved a little sca The part in betw through the musc the minuscule nea The infection c my daily rounds t know it!" I was si to pull out the el have worried. No I examined the le d put him in traction, ld the pieces together. lays later, all the pins icteria, so they had to g below and the other ble hip spica. He was lle of his chest, for six , but the right femur s where the pins had hat September he was ? VA hospital. although now his left rere completely loose. leave the cast on and bout gone. For a year en a brief visit home. condent and unable to this right leg. n in his last year of nedical school. He'd d with me two years l in his patients. He th him, and arranged d further and further ng on in the lab. In eaching and research, g people directly. In stage with our bone eally should consider nything else left. It's atients had been inight at the fracture, tose bacteria when I st. Moreover, (it was ant growth stimulus I be sure what these persensitive to other was the first time in the history of medicine that we could start at least one type of growth at will. I was afraid of beginning a clinical program that might seize the public's fancy and be applied on a large scale before we knew enough about the technique. If disastrous side effects showed up later, we could lose momentum toward a revolutionary advance in medicine. I decided that if I carefully explained what we proposed to do, with all its uncertainties, and let the patient choose, then ethically I'd be doing the right thing. As to the infection, for several years we had been looking for a way to stop growth. My experiments with Bassett on dogs back in 1964 suggested that just as we could turn growth on with negative electricity, so we could turn it off with positive current. If true, this obviously could be of great importance in cancer treatment. Because ours was always a needy program, trying to do more than we had grants for, we couldn't afford the expensive equipment needed to test the idea on cancer cells. We had to settle for bacteria. In preliminary tests we found that silver electrodes, when made electrically positive, would kill all types of bacteria in a zone about a half inch in diameter, apparently because of positive silver ions driven into the culture by the applied voltage. This was an exciting discovery, because no single antibiotic worked against all types of bacteria. If thought that if I inserted the silver wire into Jim's nonunion and the area became infected, I could as a last resort make the electrode positive and perhaps save the leg a while longer. Of course, the positive current could well delay healing further or actually destroy more bone. I explained all this to Jim and said that, if he wished, I would do it. I wanted him to know the procedure was untested and potentially dangerous. With tears in his eyes, he begged, "Please try, Dr. Becker. I want my leg." Two days later, Sal and I operated through a hole in the cast. The fracture was completely loose, with not one sign of healing. We removed a little scar tissue from the bone and implanted the electrode. The part in between the bone ends was bare wire; the rest, running through the muscles and out of the skin, was insulated so as to deliver the minuscule negative current only to the bone. The infection didn't spread, and Jim's spirits improved. As I made my daily rounds three weeks later, he said, "I'm sure it's healing. I just know it!" I was still nervous when, six weeks after surgery, it was time to pull out the electrode, remove the cast, and get an X ray. I needn't have worried. Not only did the X ray show a lot of new bone, but when I examined the leg myself, I could no longer move the fracture! We put Jim in a walking cast, and he left the hospital for the first time in sixteen months. In another six weeks the fracture had healed enough for us to remove the cast, and Jim started rehabilitation for his knee, which had stiffened from disuse. All the pin tracts, especially the ones nearest the break, were still draining, and Jim asked, "Why not use the silver wire on this hole to kill the infection? Then I'll be all done and won't have to worry anymore about infecting the rest of the bone." I had to agree with his logic. If the hole through the muscle to the outside healed shut, the infection would be more likely to spread within the bone. However, I told him that the positive current might prevent the hole from filling in with bone, making a permanent weak spot there. We put in the electrode and used the same current as before, except reversing its polarity. I had no idea how long to let it run, so I arbitrarily pulled it out after one week. Nothing much seemed to have happened. The drainage might have been a little less, though not much; but I was afraid to use the positive current anymore for fear of further weakening the bone. Jim left the hospital and didn't keep his next appointment in the clinic. A year later he returned unannounced saying he was just traveling through Syracuse and thought I would like to see how he was doing. He was walking normally, with no pain, placing full weight on the right leg. He said the drainage had stopped a week after he left the hospital and had never recurred. X rays showed the fracture solidly healed and the one pin tract I'd treated filling in with new bone. The pin site on the other leg was still infected, and I said we could treat that in a few days, since we'd improved our technique in the meantime. "No, I have to be moving on," Jim replied. "I don't have a job. I don't know what I'm going to do, but I know I don't want to spend any more time in hospitals." Sal had been graduated from the residency program a few months after Jim was discharged in 1973, but before he left he spent all his free time in the lab helping us test the bactericidal (bacteria-killing) electrodes. A few previous reports had mentioned inconsistent antibacterial effects, some with alternating current, some with negative DC using stainless steel, but there had been no systematic study of the subject. We tried silver, platinum, gold, stainless steel, and copper electrodes, using a wide range of currents, on four disparate kinds of bacteria, including Staphylococcus aureus, one of the commonest and most troublesome. Soon we were able to explain the earlier inconsistencies: All five met- als stopped growth (high currents > U fects-chemical cl with all but the most metals "wo Our preliminar positive pole kill effects, éven with bacteria grown in and the ions wiped cells.)We were certa the current, when w killed new bacteria The only other met Staphylococcus, but n Of course, the ge time. At the turn infection-preventive surgeon William Ste putting silver wire i which could quite t it who had thoroug With the advent favor, because its ic tissue beyond the v cialized uses in some silver ions to sterili; the most part medic several advantages o besides silver to bu silver ions further well suited for use kills even antibiotitions. For treating wou technique. Its effectinch from the wire. window screen mac also too stiff to me We'd been doing the infection would I told him that the in with bone, mak- ent as before, except let it run, so I aruch seemed to have i, though not much; e for fear of further appointment in the ne was just traveling whe was doing. He veight on the right he left the hospital solidly healed and The pin site on the that in a few days, "No, I have to be n't know what I'm more time in hospi- tam a few months ne spent all his free teria-killing) elecistent antibacterial tegative DC using dy of the subject. copper electrodes, ds of bacteria, int and most trou- cies: All five met- als stopped growth of all the bacteria at both poles, as long as we used high currents. Unfortunately, high currents also produced toxic effects—chemical changes in the medium, gas formation, and corrosion—with all but the silver electrodes. Apparently such currents through most metals "worked" by poisoning both bacteria and nearby tissues. Our preliminary observations turned out to be right. Silver at the positive pole killed or deactivated every type of bacteria without side effects, even with very low currents. We also tried the silver wires on bacteria grown in cultures of mouse connective tissue and bone marrow, and the ions wiped out the bacteria without affecting the living mouse cells. We were certain it was the silver ions that did the job, rather than the current, when we found that the silver-impregnated culture medium killed new bacteria placed in it even after the current was switched off. The only other metal that had any effect was gold it worked against Staphylococcus, but not nearly as well as silver. Of course, the germ-killing action of silver had been known for some time. At the turn of the century, silver foil was considered the best infection-preventive dressing for wounds. Writing in 1913, the eminent surgeon William Stewart Halsted referred to the centuries-old practice of putting silver wire in wounds, then said of the foil: "I know of nothing which could quite take its place, nor have I known any one to abandon it who had thoroughly familiarized himself with the technic of its employment." With the advent of better infection-fighting drugs, silver fell out of favor, because its ions bind avidly to proteins and thus don't penetrate tissue beyond the very surface. A few silver compounds still have specialized uses in some eye, nose, and throat infections, and the Soviets use silver ions to sterilize recycled water aboard their space stations, but for the most part medicine has abandoned the metal. Electrified silver offers several advantages over previous forms, however. There are no other ions besides silver to burden the tissues. The current "injects" or drives the silver ions further than simple diffusion can. Moreover, it's especially well suited for use against several kinds of bacteria simultaneously. It kills even antibiotic-resistant strains, and also works on fungus infections. For treating wounds, however, there was one big problem with the technique. Its effect was still too local, extending only about a quarter inch from the wire. For large areas we needed something like a piece of window screen made of silver, but this would have been expensive and also too stiff to mold into the contours of a wound. We'd been doing our clinical experiments with financial support from a